A. 2 Assignment 02

> | ASSIGNMENT 02 |
| :---: |
| Study material: Book 2 |
| Fixed closing date: 24 April 2017 |
| Unique Assignment Number: 594739 |

Important:

- This is a multiple choice assignment which may be answered on a MARK READING SHEET and then posted to the university, or may be completed and submitted online using myUnisa. Before answering the assignment please read the instructions in the Unisa brochure: my STUDIES @Unisa, especially the section on completing and submitting mark-reading sheets and the section on submitting multiple-choice assignments via myUnisa.
- Always keep your rough detailed working so that you can compare your solutions with those that will be sent to you. Also keep a copy of your answers/options. You may need it later.
- 5 marks will be given for every correct answer.

In each of the following questions small letters of the alphabet (i.e. a, b, x, etc.) represent real numbers.

Question 1

Assume $\mathbf{x} \in \mathbb{R}$ and $\mathbf{- 1}<\mathbf{x}<\mathbf{0}$.
Which of the following is/are true?
A. $-2(x-1)=2-2 x$
B. $-\frac{1}{x}<0$
C. $\frac{1}{x}<-1$

1. Only A
2. Only B
3. Only C
4. Only A and C
5. A, B and C

Question 2

Which of the following is/are true?
A. If $x=a-1$ and $y=2 b$ then $x^{2}-1+x y=a^{2}-2 a-2 b+2 a b$.
B. $\sqrt{a+b}$ is defined for $-b \leq a$.
C. $\frac{a^{2}-b^{2}}{a+b}=a-b$

1. Only A
2. Only B
3. Only C
4. Only A and C
5. A, B and C

Question 3

If the expression

$$
\frac{3(a+2)}{a^{2}-1} \div \frac{a^{2}-4}{2 a^{2}+2 a}
$$

is simplified, we obtain

1. $\frac{6 a}{(a-1)(a-2)}$
2. $\frac{3(a-2)(a+2)^{2}}{2 a(a-1)(a+1)^{2}}$
3. $6 a(a+1)(a+2)$
4. $\frac{(a-1)(a-2)}{6 a}$
5. $\frac{2 a(a-1)(a+1)^{2}}{3(a-2)(a+2)^{2}}$

Question 4

Which of the following is/are true?
A. In the expression $a^{2}-2 a b-3 a b^{2}+4 b^{3}$ there are four terms.
B. x and $\frac{1}{x}$ are like terms.
C. $\frac{2 p^{2}-2 p+1}{2 p-p^{\frac{1}{2}}}$ is a rational expression.

1. Only A
2. Only B
3. Only C
4. Only A and B
5. None of them

Question 5

Which of the following statements is/are true?
A. $\frac{a^{3}+8 b^{3}}{3 a-b} \div \frac{a+2 b}{3 a^{2}+5 a b-2 b^{2}}=(a+2 b)(a-2 b)^{2}$
B. $\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}=\frac{1}{b}+\frac{1}{c}+\frac{1}{d}$
C. By completing the square the expression $\frac{1}{3} x^{2}+2 x-1$ can be written as $\frac{1}{3}(x+3)^{2}-4$.

1. Only A
2. Only B and C
3. Only B
4. Only C
5. A, B and C

Question 6

The solution set of $x+2<2 x-3 \leq x+1$ is

1. $\{x \in \mathbb{R}: x \leq 4\}$
2. ϕ
3. $\{x \in \mathbb{R}: x \leq 4\} \cup\{x \in \mathbb{R}: x>5\}$
4. $\{x \in \mathbb{R}: x>5\}$
5. $\{x \in \mathbb{R}: 4 \leq x<5\}$

Question 7

Which of the following is/are true?
A. The solution of $(2 x+1)(x+1)=1$ is $x=-\frac{1}{2}$ or $x=-1$.
B. The solution set of $\sqrt{(x-1)^{2}}+2 x=0$ is $\left\{-1, \frac{1}{3}\right\}$.
C. The equation $6 x^{2}-5 x+5=0$ has no real roots.

1. Only A
2. Only B
3. Only C
4. Only B and C
5. A, B and C

Question 8

Which of the following is/are true?
A. $x^{2}<a \Leftrightarrow x \in(-\sqrt{a}, \sqrt{a})$
B. $x^{2} \geq a \Leftrightarrow x \leq-\sqrt{a}$ or $x \geq \sqrt{a}$
C. $x \in(-\infty,-\sqrt{a}) \cup(\sqrt{a}, \infty) \Leftrightarrow x^{2} \geq a$

1. Only A
2. Only B
3. Only C
4. Only A and B
5. A, B, and C

Question 9

Suppose $\frac{1}{v}-\frac{1}{u}=\frac{m-1}{r}$.
Which of the following is/are true?
A. The equation is defined provided $v \neq 0, u \neq 0$ and $r \neq 0$.
B. $\quad v=\frac{r}{m-1}+u$
C. If $u<v$ then $\frac{m-1}{r}>0$.

1. Only A
2. Only B
3. Only C
4. Only A and B
5. Only A and C

Question 10

Suppose it takes Pete x hours to paint a room. It takes Gerry 10 minutes longer than Pete to paint the room. If Thabo paints twice as fast as Gerry he will take 3 hours to paint the room. Which of the following equations describe how long it will take Pete to paint the room?

1. $\frac{1}{2}(x+10)=3$
2. $2\left(x+\frac{1}{6}\right)=3$
3. $x+\frac{x}{6}=6$
4. $\quad \frac{1}{2}\left(x+\frac{1}{6}\right)=3$
5. $2(x+10)=3$

Question 11

A plumber charges a call-out fee of R90, plus R120 per hour to do a job. How many hours did he work if the spares needed cost R200 and the total bill was R840?

1. 7 hours
2. 4 hours and 35 minutes
3. $6 \frac{1}{4}$ hours
4. 9 hours and 25 minutes
5. There is insufficient information to answer the question.

Question 12

Which of the following is/are true?
A. Suppose the difference between two numbers a and b is 10 , and $a>b$. If the product of the numbers is 24, then numbers a and b can be found by solving

$$
\left.\begin{array}{rl}
a-b & =10 \\
a b & =24
\end{array}\right\} .
$$

B. The solution of the system

$$
\left.\begin{array}{r}
2 x-y=-1 \\
y^{2}-x^{2}=\frac{7}{4}
\end{array}\right\}
$$

is $x=\frac{1}{6}$ and $y=\frac{4}{3}$, or $x=-\frac{3}{2}$ and $y=-2$.
C. The solution of the system

$$
\left.\begin{array}{r}
2 a-3 b=2 \\
2 a+b=3
\end{array}\right\}
$$

is $a=\frac{13}{8}, \quad b=-\frac{1}{4}$.

1. Only A
2. Only B
3. Only C
4. Only A and B
5. Only A and C

Question 13

Which of the following is/are true?
A. $1,-1,1,-1, \ldots$ is a geometric sequence.
B. The first six elements in the set of consecutive triangular numbers form an arithmetic sequence.
C. The elements in any set of consecutive natural numbers form an arithmetic sequence.

1. Only A
2. Only B
3. Only C
4. Only A and B
5. Only A and C

Question 14

The first three terms of an arithmetic sequence are 3,8 and 13 . Which of the following is/are true?
A. The $10^{\text {th }}$ term of the sequence is 53 .
B. There are four prime numbers in the first 8 terms of the sequence.
C. The first term that will exceed 148 is the $31^{\text {st }}$ term.

1. Only A
2. Only B
3. Only C
4. Only A and B
5. Only B and C

Question 15

Which of the following is/are true?
A. The sixth term of the geometric sequence

$$
-0,3 ; \quad 0,09 ; \quad-0,0027 ;
$$

is $-0,00729$.
B. If the fourth term of a geometric sequence is $\frac{2}{3}$ and the ninth term is $\frac{64}{729}$, the first term is $\frac{9}{4}$.
C. Suppose $x, x-1$ and $x-4$ are consecutive terms in a geometric sequence. To find x, and hence the other given terms in the sequence, we solve the equation

$$
x(x-1)=x-4 .
$$

1. Only A
2. Only A and B
3. Only B
4. Only C
5. A, B and C

Question 16

Which of the following is/are true?
A. Suppose $a \in \mathbb{R}, n \in \mathbb{N}$ and $n \geq 2$. If $\sqrt[n]{a}$ exists, then $a^{\frac{1}{n}}=\sqrt[n]{a}$.
B. If $a \in \mathbb{R}, n \in \mathbb{N}, n \geq 2$ and n is even, then $\sqrt[n]{a}$ only exists if $a \geq 0$.
C. If $a \in \mathbb{R}, n \in \mathbb{Z}, n>2$ and n is odd, then $\sqrt[n]{a}$ exists for all a.

1. Only A
2. Only B
3. Only C
4. Only A and B
5. A, B and C

Question 17

Which of the following statements is/are true?
A. $(2 x+3 y)^{2}=(2 x)^{2}+(3 y)^{2}$
B. $(-a)^{-x}=a^{x}$
C. $a^{-\frac{1}{2}}+b^{-\frac{1}{2}}=\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a b}}$

1. Only A
2. Only B
3. A, B and C
4. None of them

Question 18

The solution of $2^{2 x}-3.2^{x}-4=0$ is

1. $x=2$
2. $x=-1$ or $\quad x=4$
3. $x=0$ or $x=2$
4. $x=1$ or $x=-4$
5. $x=0$

Question 19

Which of the following is/are true?
A. $(0,01)^{-x}=10^{2 x}$
B. The $5^{\text {th }}$ term of a geometric sequence is 36 and the $10^{\text {th }}$ term is 1152 . The common ratio r is thus 2 and the first term is $\frac{9}{4}$.
C. The solution of

$$
\log _{2}(x-3)+\log _{2}(x-4)-1=0
$$

is $x=2$ or $x=5$.

1. Only A
2. Only B
3. Only C
4. Only A and B
5. Only B and C

Question 20

Which of the following is/are true?
A. Suppose a factory has machinery which depreciates at 10% per year. The machinery was worth R50 000 at the beginning of 2004. By the end of 2007 it will be worth R36 450.
B. A population's growth/decay is described by means of the formula

$$
N=N_{0} e^{k t}
$$

where $k=-0,54$. The population is thus decreasing.
C. Suppose an initial sum of R20 000 is invested at an annual rate of 6%, and interest is compounded twice per year. If the investor wants to save until the amount has increased to R24 000, she will need to save the money for $3 \frac{1}{2}$ years.

1. Only A
2. Only B
3. Only C
4. Only A and B
5. Only B and C

TOTAL: [100]

